Sliderule data I/O#

This notebook will highlight analyzing various coincident elevation measurements. We will find regions with and use slideruleearth.io service to retrieve ICESat-2 and GEDI point elevation measurements.

Note

Keep in mind, these measurements are from different sensor types, close in time, but not at exactly the same time. All measurements also have uncertainties, so we do not expect perfect agreement.

import coincident
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
import matplotlib.pyplot as plt
import numpy as np

# For testing
# import sliderule
# sliderule.init(url='slideruleearth.io', verbose=True)
/home/docs/checkouts/readthedocs.org/user_builds/coincident/checkouts/104/src/coincident/io/download.py:27: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)
  from tqdm.autonotebook import tqdm
%matplotlib inline
# %config InlineBackend.figure_format = 'retina'

Identify a primary dataset#

Start by loading a full resolution polygon of a 3DEP LiDAR workunit which has a known start_datetime and end_datatime:

workunit = "CO_WestCentral_2019"
df_wesm = coincident.search.wesm.read_wesm_csv()
gf_lidar = coincident.search.wesm.load_by_fid(
    df_wesm[df_wesm.workunit == workunit].index
)
gf_lidar
workunit workunit_id project project_id start_datetime end_datetime ql spec p_method dem_gsd_meters ... seamless_category seamless_reason lpc_link sourcedem_link metadata_link geometry collection datetime dayofyear duration
0 CO_WestCentral_2019 175984 CO_WestCentral_2019_A19 175987 2019-08-21 2019-09-19 QL 2 USGS Lidar Base Specification 1.3 linear-mode lidar 1.0 ... Meets Meets 3DEP seamless DEM requirements https://rockyweb.usgs.gov/vdelivery/Datasets/S... http://prd-tnm.s3.amazonaws.com/index.html?pre... http://prd-tnm.s3.amazonaws.com/index.html?pre... MULTIPOLYGON (((-106.17143 38.42061, -106.3208... 3DEP 2019-09-04 12:00:00 247 29

1 rows × 33 columns

Search secondary datasets#

Provide a list that will be searched in order. The list contains tuples of dataset aliases and the temporal pad in days to search before the primary dataset start and end dates

secondary_datasets = [
    ("gedi", 40),  # +/- 40 days from lidar
    ("icesat-2", 60),  # +/- 60 days from lidar
]

gf_gedi, gf_is2 = coincident.search.cascading_search(
    gf_lidar,
    secondary_datasets,
    min_overlap_area=30,  # km^2
)

Get ICESat-2 ATL06 Data#

We’ve identified 7 granules of icesat-2 data to examine, but there is no need to work with the entire granule, which spans a huge geographic extent. Instead we’ll retrieve a subset of elevation values in the area of interest for each granule.

# Hone in on single granule as a pandas series
i = 0
granule_gdf = gf_is2.iloc[[i]]
granule = gf_is2.iloc[i]
granule_gdf.plot()  # needs to be a geodataframe
plt.title(granule.id);
# The icesat-2 track trends N-S, and is crossed by multiple GEDI tracks, resulting in the crosshatched appearance
../_images/e7c02c91fc75d422821640272c8a486d595198bdb065457ac5d5c57c3d716416.png
data_is2 = coincident.io.sliderule.subset_atl06(
    granule_gdf,
    include_worldcover=True,
)
# Plot this data and overlay footprint
fig, ax = plt.subplots(figsize=(8, 10))
plt.scatter(
    x=data_is2.geometry.x,
    y=data_is2.geometry.y,
    c=data_is2.h_li,
    s=10,
)
granule_gdf.dissolve().boundary.plot(ax=ax, color="magenta")
cb = plt.colorbar()
cb.set_label("elevation_hr (m)")
../_images/e83fe347b3418fbc30fc2f7ccd9c4894a80235d494b0c263ea1e2c16f402607d.png

Note

sliderule gets data from the envelope of multipolygon, not only data within intersecting GEDI tracks. Along-track gaps are where there is missing data.

# Here, we specify aoi=granule_gdf to only return GEDI data
# in our icesat-2 track of interest
data_gedi = coincident.io.sliderule.subset_gedi02a(
    gf_gedi,
    aoi=granule_gdf,
    include_worldcover=True,
)
data_gedi
solar_elevation flags sensitivity elevation_hr elevation_lm beam track orbit geometry worldcover.time worldcover.value worldcover.flags worldcover.file_id
time
2019-09-23 08:03:40.028272128 -48.950699 130 0.915599 2970.799561 2964.996582 2 480 4416 POINT (-107.05912 38.62987) 1.309046e+09 Tree cover 0.0 4.724464e+10
2019-09-23 08:03:40.065466880 -48.957371 130 0.935781 3084.797852 3060.687012 3 480 4416 POINT (-107.05798 38.62212) 1.309046e+09 Tree cover 0.0 4.724464e+10
2019-09-23 08:03:40.148106752 -48.958637 130 0.900905 3043.598877 3021.360107 3 480 4416 POINT (-107.0529 38.61885) 1.309046e+09 Tree cover 0.0 4.724464e+10
2019-09-23 08:03:40.164634624 -48.958889 130 0.906498 3023.866211 3002.188965 3 480 4416 POINT (-107.05188 38.6182) 1.309046e+09 Tree cover 0.0 4.724464e+10
2019-09-23 08:03:40.164634624 -48.960491 130 0.905244 2792.681885 2769.727051 5 480 4416 POINT (-107.07904 38.62588) 1.309046e+09 Tree cover 0.0 4.724464e+10
... ... ... ... ... ... ... ... ... ... ... ... ... ...
2019-10-27 11:45:12.254580224 -21.202047 130 0.960664 3284.958740 3254.115967 11 2006 4946 POINT (-107.06034 39.0425) 1.309046e+09 Tree cover 0.0 8.160438e+10
2019-10-27 11:45:12.262844416 -21.201624 130 0.962776 3294.617432 3278.242676 11 2006 4946 POINT (-107.05984 39.04281) 1.309046e+09 Grassland 0.0 8.160438e+10
2019-10-27 11:45:12.271110400 -21.201200 130 0.967792 3308.820557 3302.016357 11 2006 4946 POINT (-107.05934 39.04312) 1.309046e+09 Grassland 0.0 8.160438e+10
2019-10-27 11:45:12.279376384 -21.200781 130 0.909410 3327.383057 3322.971680 11 2006 4946 POINT (-107.05884 39.04343) 1.309046e+09 Grassland 0.0 8.160438e+10
2019-10-27 11:45:12.287642368 -21.200354 130 0.972252 3328.869141 3320.681641 11 2006 4946 POINT (-107.05832 39.04376) NaN NaN NaN NaN

7195 rows × 13 columns

# Plot this data and overlay footprint
fig, ax = plt.subplots(figsize=(8, 10))
plt.scatter(
    x=data_gedi.geometry.x,
    y=data_gedi.geometry.y,
    c=data_gedi.elevation_hr,
    s=10,
)
granule_gdf.dissolve().boundary.plot(ax=ax, color="magenta")
cb = plt.colorbar()
cb.set_label("elevation_hr (m)")
../_images/09726443f9485e8506036f41e8b289e3b5c967521b5b3ac0277ce4d05d71cc9b.png

NOTE Like ICESat-2, it’s possible to have points falling outside the estimated footprints

Spatial join: nearest points#

NOTE: we will not worry about the difference in time of acquisition between adjacent points for now

utm_crs = granule_gdf.estimate_utm_crs()
data_is2_utm = data_is2.to_crs(utm_crs)
data_gedi_utm = data_gedi.to_crs(utm_crs)
# find nearest IS2 point to each GEDI
close_gedi = data_gedi_utm.sjoin_nearest(
    data_is2_utm,
    how="left",
    max_distance=100,  # at most 100m apart
    distance_col="distances",
)
# index is GEDI subset (with _left added), with _right appended to is2 columns + Distances in meters
close_gedi = close_gedi[close_gedi["distances"].notna()]
fig, ax = plt.subplots()
plt.scatter(close_gedi.h_li, close_gedi.elevation_lm)
ax.axline((0, 0), slope=1, color="k", transform=ax.transAxes)
plt.xlabel("ATL06 elevation (m)")
plt.ylabel("GEDI L2A elevation_lm (m)")
plt.title(f"{len(close_gedi)} points within 100m")


# Add statistics and inset histogram to plot
inset_ax = inset_axes(ax, width="40%", height="30%", borderpad=2, loc="lower right")


residuals = close_gedi.h_li - close_gedi.elevation_lm
mean_residual = np.mean(residuals)
median_residual = np.median(residuals)
std_residual = np.std(residuals)
textstr = "\n".join(
    (
        f"Mean: {mean_residual:.2f}",
        f"Median: {median_residual:.2f}",
        f"Std: {std_residual:.2f}",
    )
)
props = dict(boxstyle="round", facecolor="wheat", alpha=0.5)
ax.text(
    0.05,
    0.95,
    textstr,
    transform=ax.transAxes,
    fontsize=10,
    verticalalignment="top",
    bbox=props,
)

_ = inset_ax.hist(residuals, bins=50, range=(-20, 20), color="gray")
inset_ax.axvline(0, color="k", linestyle="-", linewidth=1);
../_images/35938c654a5c071850697e8061fcad4e39ac490840741354cdc60f68a00836d0.png

Sample 3DEP#

Sample 3DEP 1m DEM at the subset of GEDI Points

Note

SlideRule returns all elevation data in EPSG:7912

close_gedi_3dep = coincident.io.sliderule.sample_3dep(
    close_gedi,
    # Restrict to only DEMs derived from specific WESM LiDAR project
    project_name=gf_lidar["project"].iloc[0],
)
# Add 3DEP elevation values to existing dataframe
close_gedi["elevation_3dep"] = close_gedi_3dep.value.values
# Geometries of nearest IS2 points
close_is2 = data_is2_utm.loc[close_gedi.time_right]
# Sample 3DEP at the subset of GEDI Points
close_is2_3dep = coincident.io.sliderule.sample_3dep(
    close_is2,
    project_name=gf_lidar["project"].iloc[0],
)
close_is2["elevation_3dep"] = close_is2_3dep.value.values
plt.axvline(0, color="k", linestyle="dashed", linewidth=1)

diff_3dep = close_is2.h_li.values - close_is2.elevation_3dep
label = f"ICESat-2 (median={np.nanmedian(diff_3dep):.2f}, mean={np.nanmean(diff_3dep):.2f}, std={np.nanstd(diff_3dep):.2f}, n={len(diff_3dep)})"
plt.hist(diff_3dep, range=[-5, 5], bins=100, color="m", alpha=0.5, label=label)

diff_3dep = close_gedi.elevation_lm.values - close_gedi.elevation_3dep
label = f"GEDI2A (median={np.nanmedian(diff_3dep):.2f}, mean={np.nanmean(diff_3dep):.2f}, std={np.nanstd(diff_3dep):.2f}, n={len(diff_3dep)})"
plt.hist(diff_3dep, range=[-5, 5], bins=100, color="c", alpha=0.5, label=label)

plt.xlabel("elevation difference (m)")
plt.title("Altimeter Elevation - 3DEP 1m DEM")
plt.xlim(-5, 5)
plt.legend(loc="upper left");
../_images/d210d4ab097bfb036b835c213849b65a45eb88cfce6020462cddbd231f2e2215.png